Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay).



Bài ghi chép Cách giải bài bác tập luyện Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 với cách thức giải cụ thể hùn học viên ôn tập luyện, biết phương pháp thực hiện bài bác tập luyện Cách giải bài bác tập luyện Hệ thức về cạnh và đường cao trong tam giác vuông.

Cách giải bài bác tập luyện Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay)

Lý thuyết và Phương pháp giải

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

Bạn đang xem: Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 (cực hay).

    Cho ΔABC, góc A vì thế 900, AH ⊥ BC, AB = c, AC = b, BC = a, AH = h thì:

        + BH = c' được gọi là hình chiếu của AB xuống BC

        + CH = b' được gọi là hình chiếu của AC xuống BC

    Khi ê, tao có:

Quảng cáo

    1) AB2 = BH.BC hoặc c2 = a.c'

    AC2 = CH.BC hoặc b2 = a.b'

    2) AH2 = CH.BH hoặc h2 = b'.c'

    3) AB.AC = AH.BC hoặc b.c = a.h

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

    5) AB2 + AC2 = BC2 hoặc b2 + c2 = a2 (Định lý Pytago)

Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC vuông bên trên A, AB < AC. lõi AH = 6 centimet, HC – HB = 3,5 centimet. Tính chừng lâu năm AB, AC

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

    Ta có: AH2 = BH.CH ⇒ BH.CH = 36

    Mặt khác: CH - BH = 3,5 (1)

    ⇒ (CH - BH)2 = 3,52 = 12,25

    Ta có: (CH + BH)2 = (CH - BH)2 + 4BH.CH = 12,25 + 4.36 = 156,25

    ⇒ CH + BH = √156,25 = 12,5 (2)

    Từ (1) và (2) ⇒ CH = 8; BH = 4,5

    Ta có: AB2 = BH.BC = 4,5.12,5 = 56,25 ⇒ AB = 7,5 (cm)

    AC2 = CH.BC = 8.12,5 = 100 ⇒ AB = 10 (cm)

Ví dụ 2: Cho tam giác ABC vuông bên trên A, lối cao AH. Gọi D, E là hình chiếu của H bên trên AB và AC. Đặt BC = a; CA = b; AB = c; AH = h; BD = x; CE = nó. Chứng minh rằng:

Quảng cáo

    a) a2x = c3; a2y = b3

    b) axy = h3

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

Xem thêm: Ảnh gái xinh che mặt

    a) Đặt BH = c'; CH = b'

    Xét ΔBDH và ΔBAC có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

    ⇒ a.x = c.c'

    ⇒ a.a.x = a.c.c' hoặc a2x = a.c.c'

    Mặt không giống a.c' = c2 nên a2x = c.c2 ⇒ a2x = c3

    Chứng minh tương tự động, tao được a2y = b3

    b) Ta có: a2x.a2y = c3.b3

    Lại có: b.c = a.h nên a4.xy = a3h3

    ⇒ a.xy = h3

Ví dụ 3: Cho điểm A ở ngoài đường thẳng liền mạch xy và cơ hội đường thẳng liền mạch xy là 3 centimet. Gọi M là vấn đề địa hình bên trên xy. Vẽ tam giác ABC vuông bên trên A sao cho tới AM là lối cao của tam giác ê. Tính độ quý hiếm nhỏ nhất của tích MB.MC

Quảng cáo

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập luyện Đại số và Hình học tập 9 đem đáp án

    Gọi H là hình chiếu của A bên trên xy, H là vấn đề thắt chặt và cố định và AH = 3cm

    Ta có: AM ≥ AH ( vệt vì thế xẩy ra Khi M trùng H)

    Xét tam giác ABC vuông bên trên A đem AM là lối cao nên :

    MB.MC = AM2 ≥ AH2 = 32 = 9

    Do ê, tích MB. MC đạt độ quý hiếm nhỏ nhất là 9 Khi M trùng H

Chuyên đề Toán 9: không hề thiếu Lý thuyết và những dạng bài bác tập luyện đem đáp án khác:

  • Lý thuyết Chương 1: Hệ thức lượng nhập tam giác vuông
  • Chủ đề: Hệ thức về cạnh và đường cao trong tam giác vuông
  • Bài tập luyện Hệ thức về cạnh và đường cao trong tam giác vuông
  • Chủ đề: Tỉ con số giác của góc nhọn
  • Bài tập luyện Tỉ con số giác của góc nhọn
  • Chủ đề: Hệ thức về góc và cạnh nhập tam giác vuông
  • Bài tập luyện Hệ thức về góc và cạnh nhập tam giác vuông
  • Chủ đề: Cách tính diện tích S tam giác vì thế tỉ con số giác
  • Bài thói quen diện tích S tam giác vì thế tỉ con số giác
  • Bài tập luyện trắc nghiệm Toán 9 Hệ thức lượng nhập tam giác vuông (phần 1 - đem đáp án)
  • Bài tập luyện trắc nghiệm Toán 9 Hệ thức lượng nhập tam giác vuông (phần 2 - đem đáp án)

Săn shopee siêu SALE :

  • Sổ lốc xoáy Art of Nature Thiên Long color xinh xỉu
  • Biti's đi ra khuôn mới mẻ xinh lắm
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3
  • Hơn đôi mươi.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 đem đáp án

ĐỀ THI, GIÁO ÁN, KHÓA HỌC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài bác giảng powerpoint, đề đua giành cho nhà giáo và khóa đào tạo và huấn luyện giành cho cha mẹ bên trên https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài tương hỗ ĐK : 084 283 45 85

Đã đem phầm mềm VietJack bên trên điện thoại cảm ứng thông minh, giải bài bác tập luyện SGK, SBT Soạn văn, Văn khuôn, Thi online, Bài giảng....miễn phí. Tải tức thì phần mềm bên trên Android và iOS.

Theo dõi Shop chúng tôi free bên trên social facebook và youtube:

Xem thêm: Hình Nền OPPO ❤️ Tuyển Tập Ảnh Nền Điện Thoại OPPO - Gấu Đây - Takimart

Loạt bài bác Chuyên đề: Lý thuyết - Bài tập luyện Toán lớp 9 Đại số và Hình học tập đem đáp án đem không hề thiếu Lý thuyết và những dạng bài bác được biên soạn bám sát nội dung công tác sgk Đại số cửu và Hình học tập 9.

Nếu thấy hoặc, hãy khuyến khích và share nhé! Các phản hồi ko phù phù hợp với nội quy phản hồi trang web có khả năng sẽ bị cấm phản hồi vĩnh viễn.


chuong-1-he-thuc-luong-trong-tam-giac-vuong.jsp



BÀI VIẾT NỔI BẬT


Các bước giải tích cos x cos 2x hiệu quả và đơn giản

Chủ đề: cos x cos 2x Phương trình cosx - cos2x = 0 có tất cả bảy nghiệm thuộc đoạn [0;2pi]. Đây là một vấn đề quan trọng trong toán học vì nó liên quan đến các hàm lượng giác và đồ thị của chúng. Việc giải phương trình này không chỉ giúp chúng ta hiểu sâu hơn về tính chất của các hàm lượng giác mà còn có thể áp dụng trong nhiều bài toán thực tế.

Công thức tính thể tích hình trụ và hướng dẫn giải bài tập

&nbsp;Công thức tính thể tích hình trụ là một kiến thức quan trọng không chỉ trong học tập mà cũng trong nhiều ứng dụng thực tế. Trong bài viết này, Viện đào tạo Vinacontrol sẽ giúp bạn&nbsp;hiểu rõ cách tính thể tích hình trụ và hướng dẫn giải&nbsp;các dạng bài tập từ cơ bản đến nâng cao.1. Công thức tính thể tích hình trụHình trụ là một trong những hình khối được nghiên cứu nhiều nhất trong hình học không gian. Để tích thể tích hình trụ, bạn thực hiện lấy chiều cao của khối trụ nhân với bình phương độ dài bán kính đáy hình tròn và nhân hằng số Pi.Nói cách khác, thể tích hình trụ bằng tích diện tích mặt đáy nhân với chiều caoCông thức tính như sau:V =&nbsp;π x r^2&nbsp;x hTrong đó:V là thể tích của hình trụr là bán kính mặt đáyh là chiều caoπ là hằng số PiCông thức tính thể tích hình trụTa có thể thấy, công thức tính thể tích trình trụ có sự tương đồng với công thức tính thể tích hình hộp chữ nhật vì đều lấy diện tích mặt đáy nhân với chiều cao✍&nbsp;Xem thêm: Công thức tính diện tích hình trụ và bài tập có lời giải2. Cách giải các dạng bài tập tính thể tích hình trụ từ cơ bản đến nâng caoTrong bài tập tính thể tích hình trụ, chúng ta sẽ thường gặp đề bài yêu cầu tính các đại lượng sau bao gồm: Thể tích,&nbsp;bán kính đáy, chiều cao. Với đại lượng thể tích, bạn có thể sử dụng công thức tính đã được trình bày ở trên. Nhưng với đại lượng bán kính đáy và chiều&nbsp;cao, chúng ta sẽ thực hiện tính như thế nào? Tất cả sẽ được hướng dẫn thông qua 3 dạng bài tập sau.2.1 Tính bán kính đáy của hình trụVới dạng bài tập này bạn&nbsp;cần chú ý đến dữ kiện đề bài cho:TH1: Nếu đề bài cho đường kính mặt tròn, bạn thực hiện chia cho 2 để tính bán kính.TH2: Nếu đề bài cho chu vi mặt đáy, bạn lấy chu vi chia 2π để tính bán kính.TH3: Nếu mặt đáy hình trụ là đường tròn ngoại tiếp của tam giác. Bạn sử dụng một trong những cách sau để tính bán kính:Phương pháp 1:&nbsp;Sử dụng đinh lý sin trong tam giácCho tam giác ABC có BC = a, CA = b và AB = c, R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó: a/sin A = b/sin B = c/sin C = 2RBán kính đáy được tính theo công thức:&nbsp;R = a/2sin A = b/2sin B = c/2sin CPhương pháp 2:&nbsp;Sử dụng diện tích tam giácTam giác ABC với&nbsp;các cạnh a, b, c&nbsp;có diện tích là: S = abc/4RBán kính đấy sẽ được tính là: R = abc/4SVới&nbsp;S của tam giác ABC sẽ được tính theo công thức Hê-rông:&nbsp;S = √[(a+b+c)(a+b−c)(a−b+c)(−a+b+c)​]/4​&nbsp;Phương pháp 3:&nbsp;Sử dụng trong hệ tọa độTìm tọa độ tâm O của đường tròn ngoại tiếp tam giác ABCTìm tọa độ một trong ba đỉnh A, B, C (nếu chưa có)Tính khoảng cách từ tâm O tới một trong ba đỉnh A, B, C, đây chính là bán kính cần tìmR = OA = OB = OC.Phương pháp 4:&nbsp;Sử dụng trong tam giác vuôngTâm đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền, do đó bán kính đường tròn ngoại tiếp tam giác vuông chính bằng nửa độ dài cạnh huyền.TH4: Nếu mặt đáy hình trụ là đường tròn nội&nbsp;tiếp của tam giác. Bạn sử dụng một trong những cách sau để tính bán kính:Sử dụng diện tích tam giác: Cho tam giác ABC có BC = a, CA = b và AB = c, r là bán kính đường tròn nội tiếp tam giác ABC,p = (a + b + c)/2 là nửa chu vi. Khi đó diện tích tam giác là S = p.rBán kính đường tròn nội tiếp sẽ được tính như sau: r = S/p2.2 Tính diện tích đáy hình trònVới dạng bài này, bạn chỉ cần thực hiện tính bán kính theo những cách được trình bày như trên. Rồi sau đó áp dựng công thức tính diện tích hình tròn S =&nbsp;π x r^22.3 Tính chiều cao của hình trụĐể tính được chiều cao hình trụ, ta sẽ dựa vào những dữ kiện đề bài cho.TH1: Nếu đề bài cho độ dài đường chéo nối từ tâm của một đáy đến đường tròn của đáy còn lại. Ta sử dụng định lý Py-ta-go để tính chiều cao.TH2: Nếu hình trụ được cắt bởi một mặt cắt tứ giác có thể là&nbsp;hình vuông, hình chữ nhật,.... thì dựa vào những dữ kiện đề bài cho. Ta thực hiện tích độ dài cách cạnh của hình tứ giác có liên quan đến đề bài. Từ đó suy ra chiều cao của hình trụ.3. Tổng hợp bài tập tính thể tích hình trụ có lời giảiBài 1:&nbsp;Tính thể tích của hình trụ biết bán kính hai mặt đáy bằng 7,1 cm; chiều cao bằng 5 cm.Giải:Ta có V=πr²hthể tích của hình trụ là: 3.14 x (7,1)² x 5 = 791,437 (cm³)Bài 2:Một hình trụ có diện tích xung quanh là 20π cm² và diện tích toàn phần là 28π cm². Tính thể tích của hình trụ đó.Giải:Diện tích toàn phần hình trụ là Stp = Sxq + Sđ = 2πrh + 2πr²Suy ra, 2πr² = 28π - 20π = 8πDo đó, r = 2cmDiện tích xung quanh hình trụ là Sxq = 2πrh<=> 20π = 2π.2.h<=> h = 5cmThể tích hình trụ là V = πr²h = π.22.5 = 20π cm³Bài 3:Một hình trụ có chu vi đáy bằng 20 cm, diện tích xung quanh bằng 14 cm². Tính chiều cao của hình trụ và thể tích của hình trụ.Giải:Chu vi đáy của hình trụ là&nbsp;chu vi của hình tròn&nbsp;= 2rπ = 20 cmDiện tích xung quanh của hình trụ: Sxq = 2πrh= 20 x h = 14→ h = 14/20 = 0,7 (cm)2rπ = 20 => r ~ 3,18 cmThể tích của hình trụ: V = π r² x h ~ 219,91 cm³Trên đây là toàn bộ nội dung về công thức tính thể tích hình trụ. Mong rằng những thông tin và Viện đào đạo Vinacontrol cung đã đã hữu ích tới bạn.Tham khảo các công thức&nbsp;toán học khác:✍&nbsp;Xem thêm:&nbsp;Quy đổi đơn vị đo thể tích✍&nbsp;Xem thêm:&nbsp;Công thức tính diện tích hình hộp chữ nhật✍&nbsp;Xem thêm:&nbsp;Công thức tích diện tích và thể tích hình cầu✍&nbsp;Xem thêm: Công thức tính thể tích hình lập phương