Tính chất đường trung tuyến Toán 7

GiaiToan.com biên soạn và đăng lên tư liệu Tính hóa học lối trung tuyến bao hàm những loài kiến thức: định nghĩa lối trung tuyến nhập tam giác, tính chất đường trung tuyến trong tam giác vuông, tam giác cân nặng, tam giác đều và công thức tính phỏng nhiều năm lối trung tuyến nhập tam giác, mời mọc những em học viên nằm trong xem thêm. Chúc chúng ta tiếp thu kiến thức tốt!

1. Đường trung tuyến

- Đường trung tuyến của một tam giác là đoạn trực tiếp nối kể từ đỉnh của tam giác cho tới trung điểm của cạnh đối lập nhập hình học tập bằng phẳng.

Bạn đang xem: Tính chất đường trung tuyến Toán 7

+ Mỗi tam giác với 3 lối trung tuyến.

Tính hóa học lối trung tuyến Toán 7

2. Tính hóa học lối tía lối trung tuyến của tam giác

Tính hóa học 1: Ba lối trung tuyến của tam giác đồng quy bên trên một điểm được gọi là trọng tâm.

Tính hóa học 2: Khoảng cơ hội kể từ trọng tâm cho tới từng đỉnh của tam giác vì chưng \frac{2}{3} lối trung tuyến ứng với đỉnh bại liệt.

Tính hóa học 3: Khoảng cơ hội kể từ trọng tâm cho tới trung điểm từng cạnh vì chưng \frac{1}{3} lối trung tuyến ứng với điểm bại liệt.

Ví dụ minh họa: Cho tam giác ABC lối trung tuyến BE, CE, AD đồng quy bên trên điểm G.

Tính hóa học lối trung tuyến Toán 7

Tính hóa học 2: \frac{{AG}}{{AD}} = \frac{{BG}}{{BE}} = \frac{{CG}}{{CF}} = \frac{2}{3}

Tính hóa học 3: \frac{{GD}}{{AD}} = \frac{{GE}}{{BE}} = \frac{{GF}}{{CF}} = \frac{1}{3}

\Rightarrow \frac{{BG}}{{GE}} = \frac{{AG}}{{GD}} = \frac{{CG}}{{GF}} = 2

3. Tính hóa học lối trung tuyến nhập tam giác vuông

- Đường trung tuyến của tam giác vuông sẽ có được không thiếu thốn những đặc điểm của một lối trung tuyến tam giác.

Định lý 1: Trong một tam giác vuông, lối trung tuyến ứng với cạnh huyền vì chưng nửa cạnh huyền.

Ví dụ minh họa: Cho tam giác ABC vuông bên trên A, lối trung tuyến AD ứng với cạnh huyền.

Định lý 2: Một tam giác với trung tuyến ứng với cùng một cạnh vì chưng nửa cạnh bại liệt thì tam giác ấy là tam giác vuông.

Ngoài đi ra tớ với đặc điểm lối trung tuyến nhập tam giác cân:

- Định lý: Trong một tam giác cân nặng, lối trung tuyến ứng với cạnh lòng vừa phải là lối cao, lối trung trực và lối phân giác.

Bài luyện ví dụ: Cho tam giác ABC cân nặng bên trên A với lối trung tuyến AM, BC = 8cm, BN = 7,5 centimet. Kẻ lối trung tuyến BN.

1. Chứng minh: ∆AMB = ∆AMC

2. Hãy tính phỏng nhiều năm lối trung tuyến AM.

Hướng dẫn giải

Tính hóa học lối trung tuyến Toán 7

1. Xét tam giác AMB và tam giác AMC có:

AM là cạnh chung

MC = MB

Xem thêm: Tổng quan về ảnh hình trắng

AB = AC (∆ABC cân nặng bên trên A)

⇒ ∆AMB = ∆AMC (c – c – c)

2. Gọi G là phú điểm của AM và BN

G là trọng tâm tam giác

\Rightarrow BG = \frac{2}{3}BN = \frac{2}{3}.7,5 = 5cm

Ta có: ∆ABC cân nặng bên trên A

Mà AM là lối trung tuyến ⇒ AM là lối cao.

\Rightarrow \widehat {AMC} = \widehat {AMB} = {90^0}

Xét tam giác GMB vuông bên trên M, theo đuổi lăm le lý Pi – tớ – go tớ có:

\begin{matrix}
  G{M^2} + M{B^2} = G{B^2} \hfill \\
   \Rightarrow GM = \sqrt {G{B^2} - M{B^2}}  = \sqrt {{5^2} - {4^2}}  = 3cm \hfill \\ 
\end{matrix}

GM = \frac{1}{3}AM \Rightarrow AM = 3.GM = 3.3 = 9cm

4. Bài luyện rèn luyện đặc điểm lối trung tuyến

Bài 1: Cho tam giác ABC cân nặng bên trên A, kẻ lối trung tuyến AM, AB = AC = 10cm, BC = 12cm

a. Chứng minh ∆AMB = ∆AMC

b. Chứng minh AM vuông góc BC

c. Tính phỏng nhiều năm AM.

Bài 2: Cho tam giác ABC, lối trung tuyến AD. Vẽ lối trung tuyến BE hạn chế AD bên trên G. Gọi I và K theo thứ tự là trung điểm của GA và GB.

Chứng minh rằng:

1. IK // DE và IK = DE

2. AG = 2/3AD

Bài 3: Cho tam giác ABC với hai tuyến đường trung tuyến BD, CE hạn chế nhau bên trên G

a, Tính những tỉ số \frac{{BG}}{{BD}};\frac{{CG}}{{CE}}

Xem thêm: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo) - Toán 9

b, Chứng minh BD + CE > \frac{3}{2}BC

---------------------------------------------

Hy vọng tài liệu Toán 7 Đường trung tuyến nhập tam giác sẽ hỗ trợ những em học viên gia tăng, ghi lưu giữ lý thuyết về tam giác kể từ bại liệt áp dụng giải những câu hỏi về tam giác một cơ hội đơn giản dễ dàng, sẵn sàng hành trang kiến thức và kỹ năng vững chãi nhập năm học tập lớp 7. Chúc những em học tập chất lượng.

BÀI VIẾT NỔI BẬT


Bài tập chứng minh tam giác nội tiếp dễ hiểu - HOCMAI

  Trong chương trình học toán lớp 9, bài tập chứng minh tam giác nội tiếp đường tròn hay bài tập chứng minh đường tròn ngoại tiếp tam giác là bài ăn điểm trong những đề kiểm tra. Các em học sinh chỉ cần nắm chắc lý thuyết, đọc kỹ đề bài là có thể …

Bài tập phương trình hóa học lớp 8

Bài tập phương trình hóa học lớp 8 được biến soạn có đáp án, hy vọng tài liệu giúp ích cho các bạn học sinh củng cố luyện tập biết cách cân bằng phường trình phản ứng.

Tìm m để phương trình có nghiệm nguyên

Tìm m để phương trình có nghiệm nguyên, GiaiToan xin giới thiệu tới các bạn tìm giá trị của m để phương trình có nghiệm nguyên giúp học sinh bổ sung và nâng cao