Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều | SGK Toán 11 - Cánh diều


1. Định nghĩa Đường trực tiếp d được gọi là vuông góc với mặt mày phẳng lặng (P) nếu như đường thẳng liền mạch d vuông góc với từng đường thẳng liền mạch a ở trong mặt mày phẳng lặng (P), kí hiệu \(d \bot \left( P.. \right)\) hoặc \(\left( P.. \right) \bot d\).

1. Định nghĩa

Đường trực tiếp d được gọi là vuông góc với mặt mày phẳng lặng (P) nếu như đường thẳng liền mạch d vuông góc với từng đường thẳng liền mạch a ở trong mặt mày phẳng lặng (P), kí hiệu \(d \bot \left( P.. \right)\) hoặc \(\left( P.. \right) \bot d\).

Bạn đang xem: Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều | SGK Toán 11 - Cánh diều

 

2. Điều khiếu nại nhằm đường thẳng vuông góc với mặt phẳng

Nếu một đường thẳng liền mạch vuông góc với hai tuyến phố trực tiếp hạn chế nhau nằm trong lệ thuộc một phía phẳng lặng thì nó vuông góc với mặt mày phẳng lặng ấy.

Nhận xét: Ta rất có thể chứng tỏ hai tuyến phố trực tiếp vuông góc bằng phương pháp chứng tỏ một đường thẳng liền mạch vuông góc với một phía phẳng lặng chứa chấp đường thẳng liền mạch cơ.

3. Tính chất

- Tính hóa học 1: Có độc nhất một phía phẳng lặng trải qua một điểm cho tới trước và vuông góc với 1 đường thẳng liền mạch cho tới trước.

- Tính hóa học 2: Có độc nhất một đường thẳng liền mạch trải qua một điểm cho tới trước và vuông góc với một phía phẳng lặng cho tới trước.

4. Liên hệ thân thích mối quan hệ tuy vậy song và mối quan hệ vuông góc của đường thẳng liền mạch và mặt mày phẳng

- Tính hóa học 3:

Cho hai tuyến phố trực tiếp tuy vậy tuy vậy. Một mặt mày phẳng lặng vuông góc với đường thẳng liền mạch này thì cũng vuông góc với đường thẳng liền mạch cơ.

Hai đường thẳng liền mạch phân biệt nằm trong vuông góc với một phía phẳng lặng thì tuy vậy song cùng nhau.

- Tính hóa học 4:

Cho nhì mặt mày phẳng lặng tuy vậy tuy vậy. Một đường thẳng vuông góc với mặt phẳng này thì cũng vuông góc với mặt mày phẳng lặng cơ.

Hai mặt mày phẳng lặng phân biệt nằm trong vuông góc với 1 đường thẳng liền mạch thì tuy vậy song cùng nhau.

5. Phép chiếu vuông góc

Cho mặt mày phẳng lặng (P) và một điểm M tuỳ ý nhập không khí. Lấy đường thẳng liền mạch d trải qua M và vuông góc với (P), gọi giao phó điểm của d và (P) là M’. Điểm M’ gọi là hình chiếu vuông góc (hay hình chiếu) của điểm M bên trên (P).

Xem thêm: Top 200+ hình nền Rồng cho điện thoại và máy tính: Mang đến may mắn và tài lộc

Cho mặt mày phẳng lặng (P). Quy tắc bịa ứng từng điểm M nhập không khí với hình chiếu vuông góc M’ của điểm cơ lên phía trên mặt phẳng lặng (P) được gọi là phép chiếu vuông góc lên phía trên mặt phẳng lặng (P).

Nhận xét: Vì quy tắc chiếu vuông góc là một trong tình huống đặc trưng của quy tắc chiếu tuy vậy song (khi phương chiếu vuông góc với mặt mày phẳng lặng chiếu) nên quy tắc chiếu vuông góc sở hữu rất đầy đủ những đặc điểm của quy tắc chiếu tuy vậy tuy vậy.

6. Định lí thân phụ lối vuông góc

Cho đường thẳng liền mạch a ko vuông góc với mặt mày phẳng lặng (P) và đường thẳng liền mạch d ở trong mặt mày phẳng lặng (P). Khi cơ, d vuông góc với a Lúc và chỉ Lúc d vuông góc với hình chiếu a’ của a bên trên (P).


Bình luận

Chia sẻ

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Xem thêm: Chu vi hình chữ nhật lớp 4: Tổng hợp kiến thức và bài tập tính chu vi hay nhất

Báo lỗi - Góp ý

2K7 nhập cuộc tức thì group nhằm nhận vấn đề thi tuyển, tư liệu không tính tiền, trao thay đổi tiếp thu kiến thức nhé!

>> Lộ Trình Sun 2025 - 3IN1 - 1 trong suốt lộ trình ôn 3 kì ganh đua (Luyện ganh đua TN trung học phổ thông & ĐGNL; ĐGTD) bên trên Tuyensinh247.com. Đầy đầy đủ theo đuổi 3 đầu sách, Thầy Cô giáo đảm bảo chất lượng, 3 bước chi tiết: Nền tảng lớp 12; Luyện ganh đua chuyên nghiệp sâu; Luyện đề đầy đủ dạng thỏa mãn nhu cầu từng kì ganh đua.

BÀI VIẾT NỔI BẬT


Các bước giải tích cos x cos 2x hiệu quả và đơn giản

Chủ đề: cos x cos 2x Phương trình cosx - cos2x = 0 có tất cả bảy nghiệm thuộc đoạn [0;2pi]. Đây là một vấn đề quan trọng trong toán học vì nó liên quan đến các hàm lượng giác và đồ thị của chúng. Việc giải phương trình này không chỉ giúp chúng ta hiểu sâu hơn về tính chất của các hàm lượng giác mà còn có thể áp dụng trong nhiều bài toán thực tế.

Tổng hợp nguyên hàm sin bình và các bước giải đơn giản

Chủ đề: nguyên hàm sin bình Nguyên hàm sin bình là một trong những dạng nguyên hàm lượng giác thường gặp. Với kiến thức và kỹ năng tính toán chính xác, bạn có thể dễ dàng tìm được nguyên hàm của hàm số này. Việc nắm vững dạng nguyên hàm này sẽ giúp bạn giải quyết các bài toán liên quan đến tính diện tích, khối lượng, và tốc độ trong các bài toán vật lý, toán cao cấp. Với nguyên hàm sin bình, bạn sẽ trang bị thêm kiến thức cần thiết để hoàn thành xuất sắc các bài toán thực tế.

Công thức tính thể tích khối chóp dễ hiểu nhất

Khối chóp là một hình học trong không gian ba chiều được tạo thành từ một hình bình hành ở đáy và các mặt tam giác kết nối từ các cạnh của hình bình hành đó đến một điểm gọi là đỉnh. Đỉnh này không nằm trên mặt phẳng của hình bình hành. Các mặt tam giác của khối chóp là các tam giác đều hoặc tam giác cân.

Giới hạn quang điện của mỗi kim loại là

Giới hạn quang điện của mỗi kim loại là Bước sóng dài nhất của bức xạ chiếu vào kim loại đó mà gây ra hiện tượng quang điện Bước sóng ngắn nhất của bức xạ chiếu

Hình ảnh Doraemon chibi, Doraemon cute đẹp nhất

Chẳng còn ai cảm thấy xa lạ với Doraemon, chú mèo máy đến từ tương lai. Nếu bạn là fan mèo máy thì những hình ảnh Doraemon chibi, Doraemon cute đẹp nhất dưới đây chắc hẳn sẽ làm bạn rất thích thú.