Các dạng toán rút gọn lớp 9 có đáp án

1. Cách rút gọn biểu thức và một trong những dạng toán liên quan

Dạng 1: Rút gọn gàng biểu thức đem chứa chấp căn

Phương pháp rút gọn biểu thức

Bước 1: Tìm ĐK xác lập.

Bạn đang xem: Các dạng toán rút gọn lớp 9 có đáp án

Bước 2: Tìm kiểu mẫu thức cộng đồng, quy đồng kiểu mẫu thức, rút gọn gàng tử thức, phân tách tử thức trở thành nhân tử.

Bước 3: Chia cả tử và kiểu mẫu mang đến nhân tử cộng đồng của tử và kiểu mẫu.

Bước 4: Khi này phân thức được tối giản thì tớ triển khai xong việc rút gọn gàng.

Dạng 2: Tính độ quý hiếm của biểu thức bên trên x = x0

Phương pháp:

Bước 1: Rút gọn gàng biểu thức A..

Bước 2: Thay độ quý hiếm x = x0 vào biểu thức vẫn rút gọn gàng rồi tính sản phẩm.

Dạng 3: Tính độ quý hiếm của thay đổi x nhằm biểu thức A = k (hằng số)

Phương pháp:

Bước 1: Rút gọn gàng biểu thức A.

Bước 2: Giải phương trình A – k = 0.

Bước 3: Kiểm tra nghiệm với ĐK và Kết luận.

2. Bài tập dượt rút gọn biểu thức chứa chấp căn thức

Ví dụ 1: Rút gọn gàng biểu thức:

a) \sqrt {14 + 6\sqrt 5 }  - \sqrt {14 - 6\sqrt 5 }

b) \sqrt {\left( {\sqrt 5  + 1} \right)\sqrt {6 - 2\sqrt 5 } }

c) \frac{{15}}{{\sqrt 6  - 1}} + \frac{8}{{\sqrt 6  + 2}} + \frac{6}{{3 - \sqrt 6 }} - 9\sqrt 6

Hướng dẫn giải

a) Ta có:

\begin{matrix}
  \sqrt {14 + 6\sqrt 5 }  - \sqrt {14 - 6\sqrt 5 }  \hfill \\
   = \sqrt {9 + 2.3\sqrt 5  + 5}  - \sqrt {9 - 2.3\sqrt 5  + 5}  \hfill \\
   = \sqrt {{3^2} + 2.3\sqrt 5  + {{\left( {\sqrt 5 } \right)}^2}}  - \sqrt {{3^2} - 2.3\sqrt 5  + {{\left( {\sqrt 5 } \right)}^2}}  \hfill \\
   = \sqrt {{{\left( {3 + \sqrt 5 } \right)}^2}}  - \sqrt {{{\left( {3 - \sqrt 5 } \right)}^2}}  \hfill \\
   = \left| {3 + \sqrt 5 } \right| - \left| {3 - \sqrt 5 } \right| \hfill \\
   = 3 + \sqrt 5  - \left( {3 - \sqrt 5 } \right) \hfill \\
   = 3 + \sqrt 5  - 3 + \sqrt 5  = 2\sqrt 5  \hfill \\ 
\end{matrix}

b) Ta có:

\begin{matrix}
  \sqrt {\left( {\sqrt 5  + 1} \right)\sqrt {6 - 2\sqrt 5 } }  = \sqrt {\left( {\sqrt 5  + 1} \right)\sqrt {{{\left( {\sqrt 5 } \right)}^2} - 2\sqrt 5  + {1^2}} }  \hfill \\
   = \sqrt {\left( {\sqrt 5  + 1} \right)\sqrt {{{\left( {\sqrt 5  - 1} \right)}^2}} }  \hfill \\
   = \sqrt {\left( {\sqrt 5  + 1} \right)\left| {\sqrt 5  - 1} \right|}  \hfill \\
   = \sqrt {\left( {\sqrt 5  + 1} \right)\left( {\sqrt 5  - 1} \right)}  = \sqrt {5 - 1}  = \sqrt 4  = 2 \hfill \\ 
\end{matrix}

c) Ta có: \dfrac{{15}}{{\sqrt 6  - 1}} + \dfrac{8}{{\sqrt 6  + 2}} + \dfrac{6}{{3 - \sqrt 6 }} - 9\sqrt 6

= \dfrac{{15\left( {\sqrt 6  + 1} \right)}}{{6 - 1}} + \dfrac{{8\left( {\sqrt 6  - 2} \right)}}{{6 - 4}} + \dfrac{{6\left( {3 + \sqrt 6 } \right)}}{{9 - 6}} - 9\sqrt 6

= \dfrac{{15\left( {\sqrt 6  + 1} \right)}}{5} + \dfrac{{8\left( {\sqrt 6  - 2} \right)}}{2} + \dfrac{{6\left( {3 + \sqrt 6 } \right)}}{3} - 9\sqrt 6

=3\left(\sqrt{6}+1\right)+4\left(\sqrt{6}-2\right)+2\left(3+\sqrt{6}\right)-9\sqrt{6}

=3\sqrt{6}+3+4\sqrt{6}-8+6+2\sqrt{6}-9\sqrt{6}

=(3\sqrt{6}+4\sqrt{6}+2\sqrt{6}-9\sqrt{6})+(3+6-8)

= 0 + 1 = 1

Ví dụ 2: Cho biểu thức: A = \frac{{\sqrt x }}{{\sqrt x  - 5}} - \frac{{10\sqrt x }}{{x - 25}} - \frac{5}{{\sqrt x  + 5}} với x \geqslant 0;x \ne 25

a) Rút gọn gàng biểu thức A.

b) Tính độ quý hiếm của A Khi x = 9.

c) Tính độ quý hiếm của x nhằm biểu thức A = 0,5.

Hướng dẫn giải

a. A = \frac{{\sqrt x }}{{\sqrt x  - 5}} - \frac{{10\sqrt x }}{{x - 25}} - \frac{5}{{\sqrt x  + 5}}

\begin{matrix}
  A = \dfrac{{\sqrt x }}{{\sqrt x  - 5}} - \dfrac{{10\sqrt x }}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} - \dfrac{5}{{\sqrt x  + 5}} \hfill \\
  A = \dfrac{{\sqrt x \left( {\sqrt x  + 5} \right)}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} - \dfrac{{10\sqrt x }}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} - \dfrac{{5\left( {\sqrt x  - 5} \right)}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} \hfill \\ 
\end{matrix}

\begin{matrix}
  A = \dfrac{{\sqrt x \left( {\sqrt x  + 5} \right) - 10\sqrt x  - 5\left( {\sqrt x  - 5} \right)}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} \hfill \\
  A = \dfrac{{x + 5\sqrt x  - 10\sqrt x  - 5\sqrt x  + 25}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} \hfill \\
  A = \dfrac{{x - 10\sqrt x  + 25}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} = \dfrac{{{{\left( {\sqrt x  - 5} \right)}^2}}}{{\left( {\sqrt x  - 5} \right)\left( {\sqrt x  + 5} \right)}} = \dfrac{{\sqrt x  - 5}}{{\sqrt x  + 5}} \hfill \\ 
\end{matrix}

b. Thay x = 9 vô biểu thức tớ có: A = \frac{{\sqrt 9  - 5}}{{\sqrt 9  + 5}} = \frac{{3 - 5}}{{3 + 5}} = \frac{{ - 2}}{8} =  - \frac{1}{4}

Kết luận Khi x = 9 thì A =  - \frac{1}{4}

c. Để A = 0,5

\Leftrightarrow \frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{1}{2}

\Leftrightarrow 2(\sqrt{x}-5)=\sqrt{x}+5

\Leftrightarrow 2\sqrt{x}-10=\sqrt{x}+5

\Leftrightarrow \sqrt{x}=15

\Leftrightarrow x=225 (tmđk)

Vậy x = 225 thì A = 0,5

Ví dụ 3: Cho những biểu thức H = \frac{{x - \sqrt[3]{x}}}{{x - 1}} và K = \frac{1}{{\sqrt[3]{x} - 1}} + \frac{1}{{\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1}} với x \ne 1

a) Tính độ quý hiếm của biểu thức H Khi x = 8.

b) Rút gọn gàng biểu thức P.. = H + K.

c) Tìm độ quý hiếm của x nhằm P.. = 1,5.

Hướng dẫn giải

a. Thay x = 8 vô biểu thức H, tớ có:

H = \frac{{8 - \sqrt[3]{8}}}{{8 - 1}} = \frac{{8 - 2}}{7} = \frac{6}{7}

Vậy H=\frac{6}{7} khi x = 8

b. Ta có: P.. = H + K

\Rightarrow P.. = \dfrac{{x - \sqrt[3]{x}}}{{x - 1}} + \dfrac{1}{{\sqrt[3]{x} - 1}} + \frac{1}{{\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1}}

P = \dfrac{{x - \sqrt[3]{x}}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} + \dfrac{1}{{\sqrt[3]{x} - 1}} + \frac{1}{{\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1}}

\begin{matrix}  P.. = \dfrac{{x - \sqrt[3]{x}}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} + \dfrac{{\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} + \dfrac{{\sqrt[3]{x} - 1}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} \hfill \\  P.. = \dfrac{{x - \sqrt[3]{x} + \sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1 + \sqrt[3]{x} - 1}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} = \dfrac{{x + \sqrt[3]{{{x^2}}} + \sqrt[3]{x}}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} \hfill \\ \end{matrix}

P = \frac{{\sqrt[3]{x}\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}}{{\left( {\sqrt[3]{x} - 1} \right)\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{x} + 1} \right)}} = \frac{{\sqrt[3]{x}}}{{\sqrt[3]{x} - 1}}

c) Để P.. = 1,5

\Leftrightarrow \frac{{\sqrt[3]{x}}}{{\sqrt[3]{x} - 1}} =\frac{3}{2}

\Leftrightarrow \ 3\left(\sqrt[3]{x}-1\right)=2\sqrt[3]{x}

\Leftrightarrow \ 3\sqrt[3]{x}-3=2\sqrt[3]{x}

\Leftrightarrow \ \sqrt[3]{x}=3

\Leftrightarrow x=27 (tmđk)

Vậy x = 27 thì P.. = 1,5

Xem thêm: Chu vi xích đạo của trái đất

Ví dụ 4: Cho biểu thức: A = \frac{{x - 2\sqrt x }}{{x\sqrt x  - 1}} + \frac{{\sqrt x  + 1}}{{x\sqrt x  + x + \sqrt x }} + \frac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}

a) Rút gọn gàng biểu thức A.

b) Tìm x nhằm biểu thức A nhận độ quý hiếm là số nguyên vẹn.

Hướng dẫn giải

a) Ta có: A = \dfrac{{x - 2\sqrt x }}{{x\sqrt x  - 1}} + \dfrac{{\sqrt x  + 1}}{{x\sqrt x  + x + \sqrt x }} + \dfrac{{1 + 2x - 2\sqrt x }}{{{x^2} - \sqrt x }}

=\frac{x-2\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{\sqrt{x}(x\sqrt{x}-1)}

=\frac{x-2\sqrt{x}}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}+1}{\sqrt{x}(x+\sqrt{x}+1)}+\frac{1+2x-2\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}

\frac{\sqrt{x}(x-2\sqrt{x})}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{1+2x-2\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}

= \frac{{\sqrt x (x - 2\sqrt x ) + (\sqrt x + 1)(\sqrt x - 1) + 1 + 2x - 2\sqrt x }}{{\sqrt x (\sqrt x - 1)(x + \sqrt x + 1)}}

=\frac{x\sqrt{x}-2x+x-1+1+2x-2\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}

= \frac{{x\sqrt x + x - 2\sqrt x }}{{\sqrt x (\sqrt x - 1)(x + \sqrt x + 1)}}

= \frac{{\sqrt x (x + \sqrt x - 2)}}{{\sqrt x (\sqrt x - 1)(x + \sqrt x + 1)}} = \frac{{\sqrt x (\sqrt x - 1)(\sqrt x + 2)}}{{\sqrt x (\sqrt x - 1)(x + \sqrt x + 1)}} = \frac{{\sqrt x + 2}}{{x + \sqrt x + 1}}

b)  Với x > 0, x ≠ 1\Rightarrow x + \sqrt x  + 1 > \sqrt x  + 1 > 1

0 < \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} < \frac{{\sqrt x  + 2}}{{\sqrt x  + 1}} = 1 + \frac{1}{{\sqrt x  + 1}} < 2

Vì A nguyên vẹn nên A = 1 \Leftrightarrow \frac{{\sqrt x  + 2}}{{x + \sqrt x  + 1}} = 1 \Leftrightarrow x = 1\left( {ktm} \right)

Vậy không tồn tại độ quý hiếm nguyên vẹn này của x nhằm độ quý hiếm A là một trong những nguyên vẹn.

3. Bài tập dượt tự động tập luyện Rút gọn gàng biểu thức

Bài 1:

a) \left( {1 - \frac{{\sqrt 5  + 5}}{{1 + \sqrt 5 }}} \right)\left( {\frac{{5 - \sqrt 5 }}{{1 - \sqrt 5 }} - 1} \right)

b) \frac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} + \frac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} - \left( {2 + \sqrt 3 } \right)

c) \sqrt {5 - 2\sqrt 6 }  - \sqrt {{{\left( {\sqrt 2  - 5\sqrt 3 } \right)}^2}}

d) \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}}  + \sqrt {4 - 2\sqrt 3 }

e) \sqrt {\sqrt {15}  - 6\sqrt 6 }  + \sqrt {33 - 12\sqrt 6 }

f) \frac{{\sqrt 2 }}{{1 + \sqrt 2  - \sqrt 3 }} - \frac{{\sqrt 6 }}{{\sqrt 2  + \sqrt 3  - \sqrt 5 }}

Bài 2: Rút gọn gàng những biểu thức sau:

a) M = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}\left( {\frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} - \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}}} \right) với x > 0;x \ne 1

b) N = \left( {\frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} - \frac{{\sqrt x  - 1}}{{\sqrt x  + 1}} + 4\sqrt x } \right):\frac{{2x\sqrt x }}{{x - 1}} với x \geqslant 0;x \ne 9

c) P = \frac{{x + y}}{{\sqrt x  + \sqrt hắn }}:\left( {\frac{{x + y}}{{x - y}} - \frac{y}{{y - \sqrt {xy} }} + \frac{x}{{\sqrt {xy}  + x}}} \right) - \frac{{\sqrt {{{\left( {\sqrt x  - \sqrt hắn } \right)}^2}} }}{2} với y > x > 0

Bài 3: Cho biểu thức: B = \left( {\frac{1}{{\sqrt x  - 1}} - \frac{1}{{\sqrt x }}} \right):\left( {\frac{{\sqrt x  + 1}}{{\sqrt x  - 2}} - \frac{{\sqrt x  + 2}}{{\sqrt x  - 1}}} \right)

a) Tìm ĐK của x nhằm biểu thức B đem nghĩa.

b) Tính độ quý hiếm của biểu thức B biết x = 9 - 4\sqrt 5

c) Tìm độ quý hiếm của x nhằm B dương.

Bài 4: Cho biểu thức: C = \left( {\frac{1}{{\sqrt x  - 2}} + \frac{{5\sqrt x  - 4}}{{2\sqrt x  - x}}} \right):\left( {\frac{{2 + \sqrt x }}{{\sqrt x }} - \frac{{\sqrt x }}{{\sqrt x  - 2}}} \right)

a) Tìm ĐK của x nhằm biểu thức C đem nghĩa.

b) Rút gọn gàng biểu thức C.

c) Tính độ quý hiếm của biểu thức C biết x = \frac{{3 - \sqrt 5 }}{2}

Bài 5: Cho biểu thức: D = \frac{3}{{\sqrt x  + 1}} + \frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{{6\sqrt x  - 4}}{{x - 1}}

a) Tìm ĐK xác lập của D.

b) Rút gọn gàng biểu thức D.

c) Tính độ quý hiếm của x nhằm biểu thức D 0,5.

Bài 6: Cho biểu thức: E = \left( {\frac{{2\sqrt x }}{{\sqrt x  + 3}} - \frac{{\sqrt x }}{{\sqrt x  - 3}} - \frac{{3x - 3}}{{x - 9}}} \right):\left( {\frac{{2\sqrt x  - 2}}{{\sqrt x  - 3}} - 1} \right)

a) Tìm ĐK xác lập của E.

b) Rút gọn gàng biểu thức E.

c) Tính độ quý hiếm của x nhằm biểu thức E -0,5.

Bài 7: Cho biểu thức: F = \left( {\frac{{x - 7\sqrt x  + 12}}{{x - 4\sqrt x  + 3}} + \frac{1}{{\sqrt x  - 1}}} \right).\frac{{\sqrt x  + 3}}{{\sqrt x  - 3}}với x \geqslant 0;x \ne 9

a) Rút gọn gàng biểu thức F.

b) Tìm độ quý hiếm của x nhằm F > 0,75.

c) Tìm x nhằm P.. = 2.

Bài 8: Chứng minh rằng \sqrt {2 - \sqrt 3 }  + \sqrt {2 + \sqrt 3 }  = \sqrt 6

Bài 9: Cho biểu thức: A = \frac{{{x^2} - \sqrt x }}{{x + \sqrt x  + 1}} - \frac{{2\sqrt x }}{{\sqrt x }} + \frac{{2\left( {x + 1} \right)}}{{\sqrt x  - 1}}

a) Rút gọn gàng biểu thức A.

b) Tìm độ quý hiếm nhỏ nhất của A.

c) Tìm x nhằm biểu thức B = \frac{{2\sqrt x }}{A} nhận độ quý hiếm là số nguyên vẹn.

Bài 10: Cho biểu thức: A = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}};B = \left( {\frac{1}{{\sqrt x  - 1}} + \frac{{\sqrt x }}{{x - 1}}} \right).\frac{{x - \sqrt x }}{{2\sqrt x  + 1}}

a) Rút gọn gàng biểu thức B.

b) Tính độ quý hiếm của A khi x = 5 + 2\sqrt 6

c) Với x \in \mathbb{N},x \ne 1. Tìm độ quý hiếm lớn số 1 và độ quý hiếm nhỏ nhất của biểu thức P.. = A.B.

Bài 11: Cho biểu thức P=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)

(với x>0,\ x\ne4)

a) Rút gọn gàng biểu thức P

b) Tim những độ quý hiếm nguyên vẹn của x nhằm biểu thức Q=\left(-\sqrt{x}-1\right).P đạt độ quý hiếm nguyên vẹn.

Bài 12: Cho biểu thức A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{x-2\sqrt{x}+1}{x-1}

Xem thêm: Phân giác ngoài của một tam giác là gì?Tính chất đường phân giác của tam giác

a) Rút gọn gàng biểu thức A.

b) Tìm x nhằm |A| > 0

c) Tìm những độ quý hiếm nguyên vẹn của x nhằm A có mức giá trị nguyên

BÀI VIẾT NỔI BẬT


SÊN RECTO ĐEN 428 - 108 MẮT 9 LY

Đại lý vỏ xe Phúc Thảo chuyên cung cấp các loại vỏ không ruột, vỏ có ruột và ruột xe gắn máy cho tất cả các dòng xe Honda, Yamaha, Suzuki, SYM…trên thị trường hiện nay.